
A Short
Introduction

to Servo
Web Engines Hackfest 2014

Martin Robinsonn
@abandonedwig

http://twitter.com/abandonedwig

The Modern Browser
Fast JavaScript engines
Optimized layout routines
Rapidly evolving rendering pipelines
Ever increasing concurrency

Not Good
Enough

Not Good Enough
Memory safety issues leave users exposed
Web application complexity increases
Low amount of parallelism, leaving idle cores

Web Engine Parallelism
Web engines use fine-grained concurrency, but little
parallelism
Data structures not designed for parallelism
Difficult to be parallel while ensuring memory safety
Native concurrency primitives not flexible

What We Want
A safe and parallel web engine.

Rust
Initially Graydon Hoare's personal project, but adopted by
Mozilla Research in 2009.
Fast, concurrent, safe compiled system language
The compiler protects you from common memory issues
Fast approaching version 1.0

What We Want
A safe and parallel web engine.

Compile-time Memory
Safety

fn main() {
 let mut vector = vec!(1i, 2i, 3i, 4i);
 let first_element = &vector[0];
 vector.clear();

 println!("Derferenced pointer to cleared value: {}", *first_element);
}

error: cannot borrow ̀vector̀ as mutable because it is also borrowed as immutable
...
error: aborting due to previous error

What We Want
A safe and parallel web engine.

Easy Concurrency
let (tx, rx) = channel();

spawn(proc() {
 tx.send("Hello from a task!".to_string());
});

let message = rx.recv();
println!("{}", message);

What We Want
A safe and parallel web engine.

Task Data Safety
let mut x = vec!(1i, 2i, 3i);

spawn(proc() {
 println!("The value of x[0] is: {}", x[0]);
});

println!("The value of x[0] is: {}", x[0]);

error: use of moved value: ̀x̀
note: in expansion of format_args!
<std macros>:2:23: 2:77 note: expansion site
<std macros>:1:1: 3:2 note: in expansion of println!
error: aborting due to previous error

Servo
experimental browser engine

by Mozilla Research

Servo
Parallel layout design from the start
Work-stealing algorithm for task scheduling
Use of green threads to allow creating many tasks
Modern rendering pipeline

Architecture
ConstellationConstellation

PipelinePipeline
RenderRender
 Task Task

ScriptScript
 Task Task

LayoutLayout
 Task Task

PipelinePipeline
RenderRender
 Task Task

ScriptScript
 Task Task

LayoutLayout
 Task Task

PipelinePipeline
RenderRender
 Task Task

ScriptScript
 Task Task

LayoutLayout
 Task Task

Optimistically Parallel
Layout

Parallelize layout as much as possible
A series of bottom-up and top-down passes on a flow tree
Serialize when necessary, but hopefully uncommon or
limited cases
See speedup from parallelism on typical pages

Rendering Pipeline
Always composited, no legacy approaches
Works divided into tasks

Layout Task: convert flow tree to display list
Render Task: rasterize display list to shared surfaces
Compositor Task: render rasterized content

Compositor layers are tiled and double-buffered
Pinch zoom and panning support

Status

Status
Missing many CSS features and HTTP caching
Form interaction only in the early stages
Has evolving support for vertical writing modes
Very close to dog-foodable
CEF API for embedding

Get Involved
Development happens in the open, including roadmap
Outside contributors very welcome
Everything available on
Building is easy and fast compared to other engines
Look for bugs marked E-Easy
Discussion at #servo on irc.mozilla.org

Github

http://github.com/servo/servo

Demo

Questions

