Variable Fonts in Chrome
Webengines Hackfest, Igalia, A Coruia

Behdad Esfahbod behdad@google.com
Dominik Rottsches drott@google.com

Demos

e Responsive Web Typography
e Font Playground

e Underware’s HOI

Variable Fonts in
CSS Level 4 Fonts

font-weight, font-stretch, font-style before

3.2. Font weight: the font-weight property

Name: font-weight

Value: normal | bold | bolder I lighter | 100 | 200 | 300 14001500 1 600 1 700 | 800 | 900
Initial: normal

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visual

Computed value:

Animatable:

numeric weight value (see description)

as font weight

font-weight, font-stretch, font-style

§ 2.2. Font weight: the ‘font-weight’ property

Name:

‘font-weight’

variable

[Value:

<font-weight-absolute>1 bolder | lighter

Initial:
Applies to:
Inherited:
Percentages:

Media:

Computed value:

Canonical order:

Animatable:

normal

all elements

yes

n/a

visual

numeric weight value (see description)
per grammar

As <number>

The ‘font-weight’ property specifies the weight of glyphs in the font, their degree of blackness or stroke thickness.

This property accepts values of the following:

<font-weight-absolute> = [normal | bold | <number>]

Values have the following meanings:

1 ‘<number>’

These values form an ordered sequence, where each number indicates a weight that is at least as dark as
its predecessor. Only values greater than or equal to 1, and less than or equal to 1000, are valid, and all oth-
er values are treated as parse errors. Certain numeric values correspond to the commonly used weight
names below (Note that a font might internally provide its own mappings, but those mappings within the font

. are disregarded):

Ranges in @font-face

@font-face {
font-family: Roboto;
font-weight: 700; /* or: 400, 600, 900,... */
font-style: normal; /* or: italic, oblique =*/
font-stretch: condensed; /* or: expanded, ultra-expanded */

Ranges in @font-face

@font-face {
font-family: Roboto;
font-weight: 400 700;
font-style: 10deg 20deg;
font-stretch: 50% 200%;

New Font Style Matching Algorithm

e https://drafts.csswq.orq/css-fonts-4/#font-style-matching

e Previously, for a font request:

o Match font-stretch, font-style, font-weight
by traversing keyword values, find closest keyword

e New definition: Search for numerically nearest value

o As defined by @font-face and
o Within the range that the variable font allows

font-optical-sizing

§ 8.1. Optical sizing control: the ‘font-optical-sizing’ property

Name: ‘font-optical-sizing’
Value: auto | none

Initial: auto

Applies to: all elements
Inherited: yes

Percentages: nla
Media: visual

Computed as specified
value:

Canonical per grammar
order:

Animatable: no

font-variation-settings

e Similarto font-feature-settings
e Sequence of 4 character axis name plus

font-variation-settings:

‘wght’ 700,

‘UPWD’ 200;

Variable Fonts in Blink

New CSS Font Matching Algorithm

e Implements font-stretch, font-style, font-weight matching based on numbers, not based on
keywords

e FontTraits replaced with FontSelectionRequest
o Now storing three FontSelectionValues (numerical values for stretch, style weight)

e FontSelectionCapabilities are storing what the @font-face definition provides

Example: Font Style Matching - Before

@font-face { @font-face { @font-face {

Font-family: Roboto; Font-family: Roboto; Font-family: Roboto;

Src: url(Roboto-light.otf); Src: url(Roboto-regular.otf); Src: url(Roboto-bold.otf);
Font-weight: 200; Font-weight: 400; Font-weight: 700;

3 3 3

|
|
i
<div style="font-weight: 600;”>Bold text</div>

'3

Example: Font Style Matching - New

@font-face {
Font-family: Roboto;

Src: url(Roboto-lighter.otf); Src: url(Roboto-bolder.otf);

Font-weight: 100 300; Font-weight: 500 700;
3 3

@font-face {
Font-family: Roboto;

r—
et
.

[== =]

2]

<div style="font-weight: 600;”>Bold text</div>

'3

Rasterizing Variable Fonts

e Rasterization of variable fonts is controlled by axis parameters

e Passing variation axes parameters to Skia

SkFontMgr: :FontParameters: :Axis weight_axis = {
SkSetFourByteTag('w', 'g', 'h', 't'),

SkFloatToScalar(selection_capabilities.weight.clampToRange(
selection_request.weight))};

The Cross-platform Challenge

e Skia uses platform specific font rasterization engines

e Only FreeType, CoreText on Mac 10.12 support, newer Windows 10 support rasterizing

?

0OS ChromeOS Linux Android Windows Mac OS
Font
Rasterizing : :
for existing FreeType FreeType FreeType | DirectWrite | CoreText
fonts
: CoreText

\F/arlable FreeType FreeType FreeType FreeType

onts FreeType

'3

Font-format specific web font instantiation

e |s this web font variable? = Does it have an fvar table?
o If yes, do we have platform support?
m If yes, use the platform rasterizer
m If not, use built-in FreeType!

o Ifitis not variable, keep using the existing platform rasterizer

Windows Chrome Binary Size

Without Variations

With Variations (+ 0.08%)

Shipping FreeType on all platforms

e FreeType harmonized and unified between PDFium and Blink
e third_party/freetype2 and third_party/freetype-android unified

e 3 different checkouts for building Chrome reduced to one

Chrome 62 Beta: Network Quality Estimator API, OpenType
i variable fonts, and media capture from DOM elements
‘0 Chromium Blog P

Wednesday, September 20, 2017

News and developments from the open source browser project
Unless otherwise noted, changes described below apply to the newest Chrome Beta channel release for

Android, Chrome OS, Linux, Mac, and Windows.

Network Quality Estimator API

The Network Infomation API has been available in previous versions of Chrome, but has only provided
theoretical network speeds given the type of a user's connection. In this release, the API has been expanded to
provide developers with network performance metrics as experienced by the client. Using the AP, a developer
can inspect the current round trip time and throughput and be notified of performance changes. To

simplify application logic, the API also summarizes measured network performance as the cellular connection
type (e.g. 2G) most similar to it, even if the actual connection is WiFi or Ethernet.

Using these network quality signals, developers can tailor content to network constraints. For example, on very
slow connections, developers can serve a simplified version of the page to improve page load times. These
signals will also soon be available as HTTP request headers and enabled via Client Hints.

OpenType Variable Fonts

OpenType Font Variations bring new typographic capabilities to the web. Previously, one font file contained just
a single instance of a font family, including only one weight (Regular, Bold, Black...) or one stretch (Normal,

NEAC W /A D
DECOVAR

Figure: Anil A Ivar and Decovar variable font P

Condensed, Expanded...).

With variable fonts, responsive design on the web now extends to typography. OpenType Variations provide a
continuous spectrum of stylistic variations while saving space and bandwidth, since they all load from a single
compact font file. Stretch, style, and weight can be adjusted using the respective updated CSS properties which

now allow numeric values. Fine tuning of variation axis parameters, such as weight or width, is possible using
the £

CSS property.

https://blog.chromium.orq/2017/09/chrome-62-beta-network-quality.html

New applications of
Hybrid Font Stack

CFF2

e Adobe CFF2 format, alternative to TrueType contours format

e Adobe Variable Font Prototype exists as CFF2 version

CBDT / CBLC

e Color font format

e Noto Color Emoji

SBIX

e Color font format

e Apple Color Emoji

COLR/CPAL

e Color Font Format

e Twemoji, COLR/CPAL example font, Mozilla’s default emoiji font

Summary

Hybrid Font Stack without
increasing binary size

Cross Platform Support
Reaping the benefits: Additional
format support for color and
CFF2 fonts

Chromacheck

e https://pixelambacht.nl/chromacheck/

